
Python Computational Web Apps for STEM

Engineering Education

V. F. Ochkov*, A. A. Sutchenkov*, A. I. Tikhonov*
* Moscow Power Engineering Institute (MPEI), Moscow, Russian Federation

Received: June 13, 2021. Revised: July 5, 2021. Accepted: July 12, 2021. Published: July 15, 2021.

Abstract - The article discusses STEM technologies and

tools used in engineering education for scientific and

technical calculations in Python, which allow to make

classes visual and fun for students. An integrated

environment that supports all the stages of solving

computational scientific problems from their formulation,

solution to their sharing is considered. Dash, Panel, Voilà

and Streamlit technologies for publishing computational

web applications for multivariate calculations are discussed,

a comparison of these technologies for use in the educational

process is made. Web applications allow computational

experiments, but prevent changes to the source code,

eliminating the appearance of errors. The integrated

environment includes a generator of static sites for

publishing smart tutorials with embedded web applications.

This allows publishing student-developed applications along

with learning materials with a minimum of effort. The

integrated environment is convenient for both face-to-face

and distant learning.

Keywords - STEM, Python ecosystem, computational web

apps, Jupyter, Dash, Panel, Voilà, smart tutorials

I. INTRODUCTION

The application of STEM technologies in engineering
education [1, 2] involves creating a large number of
calculation apps used as visual demonstrations for
studying new material, multivariant calculations and
computational experiments, solving inverse problems –
identification of input parameters by known output
parameters.

The acronym STEM may be accompanied with
symbol A, turning it into STEAM (Science-Technology-
Engineering-Art-Mathematics), adding creative elements
to the learning process [3-7].

STEM-technology support for solving scientific
problems should include tools for their description,
application development, multivariate calculations and
computational experiments, presentation of the results in
both tabular and graphical form and publication.

Nowadays proprietary software packages
Mathematica, Maple, Mathcad, Matlab and freely
distributed Octave, Scilab, Smath are used as such
platforms. All of them are based on high-level
programming language, integrated development
environments (IDE), application libraries, scientific
visualization tools. The listed software packages differ
considerably in functionality, some of them use concept of
computational document – a uniform environment,

allowing to describe a problem, to make calculations, to
present results. Such environments are either integrated
into the IDE or use Jupyter Project [8].

The Moscow Power Engineering Institute (MPEI)
mainly uses Mathcad, Matlab, Scilab, and the Python
ecosystem in educational process. The advantages of the
latter platform are free of charge, growing popularity, and
an extensive set of libraries. The difficulty of mastering
scientific and technical calculations in Python is
comparable with Matlab and higher than in Mathcad and
Smath, that in turn requires crash course on Python
programming, acquiring skills in work with Jupyter
Notebook, NumPy and matplotlib [9].

In our opinion, the best choice for the development
environment is the Python ecosystem due to the huge
number of available libraries and Jupyter Notebook (JN)
and JupyterLab (JL). JN and JL allow embedding
formatted text, formulas, images, videos, application
source code, calculation results including those in the
form of graphics and animation into computational
documents - notebooks. JN and JL are great technologies
for developing computational applications, but the ability
to modify source code leads to bugs and sometimes
vandalism. This makes it necessary, when publishing
applications, to turn to tools that preserve the functionality
and user interface of the applications, but exclude their
modification.

As an example, an interactive web app for simulation
crystal growth using the Diffusion-limited aggregation
(DLA) model [10, 11] (Fig.1) implemented in Python in
Jupyter Notebook [9], Voilà [12] and Streamlit [13]. The
app makes it possible not only to demonstrate the growth
of fractal aggregates, but also to investigate the influence
of diffusing particle concentration, deposition conditions,
and analyze the fractal dimensionality of aggregates. The
use of NumPy library to process arrays, SciPy to operate
with aggregate neighborhood and diffusing particles,
matplotlib library for visualization and animation,
ipywidgets to build user interface allowed to make the
application compact (140 lines of source text – DLA
modeling, 30 lines – user interface and animation), to
perform simultaneous simulation of system with
thousands of diffusing particles, in contrast to original
method [10]. This example reflects as in a drop of water
the problems that arise when using STEM technologies in
teaching science and engineering disciplines:

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1316 130

Figure 1. Interactive web app for simulation Diffusion-limited aggregation (DLA)

II. COMPUTATIONAL WEB APPS IN THE EDUCATIONAL

PROCESS

As IDEs in the learning process are mainly used
Jupyter Notebook (JN), Jupyter Lab (JL), and starting
since 2019 Visual Studio Code [14], which supports
running JN, but at the same time allows to debug Python
modules.

JN supports full development cycle. Markdown
markup languages and, if necessary, HTML provide work
with formatted text, images, hyperlinks, videos, Latex
with mathematical formulas. By installing additional
modules, it is possible to pretty format the source text of
the application at the click of a button [15] or to turn a
Jupyter notebook into a managed slideshow [16] with
running applications to use in lectures (Fig.2).

To create a slideshow, it is sufficient to make a simple
markup of the notepad cells that determines the direction
of the slide transitions. It made possible to refuse
PowerPoint presentations, as JN slideshows allow you to
combine the problem description, the implementation of

source code, if necessary, the problem solution.

As a result, we get fully designed interactive
applications that enable us to perform computational
experiments on our computers.

In the context of the Covid-19 pandemic, the question
of sharing interactive web apps, and in some cases use
them in virtual laboratories, becomes acute. In what
follows, the transformation of developed computational
applications into standalone web apps will be referred to
as publication.

The publication assumes the minimum labor intensity
of transferring the functionality, user interface, hiding the
source code of the applications, controlling access to the
applications. Hiding the source code is conditioned by
providing protection against unauthorized changes,
additions and vandalism.

Most of the currently used platforms for scientific and
technical calculations have subsystems for publishing web
apps, for example, PTC Mathcad Gateway [17] is used for
Mathcad, and MATLAB Web App Server [18] is used
with Matlab. Publishing web apps with application servers
is quite transparent and involves adding widgets to the
application. In the authors' opinion, the most flexible and
balanced tool for publication is Shiny [19], developed for
the system of statistical calculations R.

Specialized tools for publishing computational web
apps appeared in the Python ecosystem in 2018. Until
then, it was necessary to use general-purpose web
frameworks such as Flask and Django [20] for this task. In
the context of educational process this approach is
unacceptable due to the fact that the time of
transformation into a web app exceeds the time of creating
a computational application in Python and requires
mastering additional technologies, including HTML, CSS,
JavaScript.

Figure 2. Slideshow in Jupyter Notebook

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1316 131

III. DASH, PANEL, VOILÀ, STREAMLIT

Let's take a look at the current Python ecosystem
technologies for publishing computational web apps in
terms of their use in the learning process and compare
them to each other.

A. Plotly Dash

Dash [21, 22] is the most mature technology for
publishing computational web apps built on top of the
Flask web framework. Dash has built-in interactive
visualization tools based on the plotly library, but other
visualization tools, such as matplotlib, can also be used. It
has an extensible set of user interface widgets. From the
point of view of educational process this is quite
important, because the possibility of creating non-standard
components allows to use the technology for virtual
laboratory works and for gamification of calculation
applications. Non-standard components are written using
React [23].

Unlike "pure" Flask, the creation of the user interface
and interaction with the user is written entirely in Python
without the need for additional technologies. For each
event, for example, the passing of the mouse cursor over a
diagram element, it is necessary to write a callback
function. There is a library [24] that allows you to develop
Dash applications in the JN environment, visualization
with plotly library [25] is well integrated into Jupyter
notebooks.

It should be noted that Dash web apps are well
scalable client-server applications, a significant part of
them functions on the client, the built-in visualization
reacts to the actions of the user without the need to contact
the server. Moreover, Dash applications can be embedded
in Django-based applications, and data exchange between
Dash applications is quite easy [25].

B. PyViz Panel

PyViz Panel [26] technology includes a set of widgets
for creating user interfaces that can be used in JN, as well
as the Bokeh application server. A distinctive feature of
this technology is an extensive set of interactive
visualization tools functioning in web applications and
including Bokeh web graphics library, GeoViews – tools
for manipulating geo-graphical data, HoloViews – high-
level tools for declarative data visualization.

In addition to creating user interfaces for standalone
web apps, Panel allows to develop applications that
function in Jupyter notebooks. However, the Panel does
not have any significant advantages over the JN in this
respect.

C. Voilà

This technology [12] is tightly integrated with JN,
allowing notebooks to be launched either from the
command line or by pressing a button on the JN toolbar.
In this case, cells with source code are not displayed.

Unlike traditional web apps, Voilà applications are
executed on behalf of the user who runs them, the
application is stateful, and a network connection is
established for the entire time the application is running.

This approach makes scalability difficult, and we should
also note the long start-up time of Voilà applications.

All of these disadvantages are compensated by the fact
that Voilà allows to run Jupyter notebooks without any
modifications. When you start the application, you can
specify a layout template in the command line. This in
turn makes it possible, for instance, to show manageable
slideshows as well as dashboards whose layouts can be
customized at runtime. Currently, Voilà applications don't
support animations created with the FuncAnimation of
matplotlib library, so the animation has to be created
manually by erasing the previous frame with
IPython.display.clear_output(), forming and displaying the
next animation frame.

All of this makes the use of technology attractive in
the educational process.

D. Streamlit

Streamlit [13] provides an easy and fast way to build
web user interfaces for Python apps. The user interface
can be displayed both on the web page and on the
removable sidebar, saving space on the screen. Streamlit
has a rich set of user interface widgets, and there are
possibilities of creating your own user interface
components [27]. The application is launched from the
command line, for example:

streamlit run dla04.py

Streamlit apps support formatted text using Markdown
as well as mathematical formulas using Latex.

Streamlit apps are single-page, stateless, application
state has to be saved in the cash. The single-page
limitation can be relaxed by reserving space on a web
page using placeholders. Start-up time of Streamlit apps is
significantly less than Voilà, applications are executed on
behalf of the user who launched them. An interesting
feature of the technology is built-in means to record and
save the screen-cast of the running app.

E. Comparison of technologies for publishing

interactive web applications

The technologies discussed above can be divided into
two groups. The first group includes only Plotly Dash.
Dash allows to create traditional web applications that
function as a sequence of client requests and server
responses. The strength of Dash is the ability to create
components on the client side, which in turn allows to
reduce the amount of data transferred between the client
and the server, as well as to create virtual labs. At the
same time, it is the most complex of the technologies
discussed in this article.

Common for the second group of technologies is the
need to maintain a constant connection between the server
and the client, which can be terminated if the user is not
active for a long time and this, in turn, requires application
restart. The most attractive technology of the second
group for educational process is Voilà, because it allows
to run Jupyter notebooks as web apps without any
additional modifications. Panel does not have any
advantages over Voilà, it uses its own set of widgets to

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1316 132

create user interfaces needs a separate application server.
The use of Panel in the educational process is reasonable
only if geographical data are used intensively.

Streamlit is an intensively developing technology with
an extensible set of user interface components for
transforming Python modules into interactive web
applications. Its ease of use has proven to be very
attractive to students, although the technology has not
been discussed in details in class.

IV. COURSE STRUCTURE

The main goal of our courses is to gain skills in
solving practical problems in students' subject area with
the Python ecosystem.

We begin with a crash course in Python programming.
We use JN as our primary environment. This allows us to
describe the problem using formatted text and formulas,
implement code to solve it, conduct computational
experiments, and present the results in a visual form in the
same notebook.

Visualization is used already in the initial stages of
learning by using our own implementation of turtle
graphics on top of the matplotlib library to embed
drawings directly into the notebook.

Python loops are illustrated by drawing polygons,
conditional statements by drawing stars, and recursion by
fractals.

To solve a problem, it is necessary to decompose it
into subproblems, find ecosystem tools to solve the
subproblems, "glue" the results of solving the
subproblems by writing program code, and present the
results in a user-friendly form. In class, we analyze a large
number of examples of solving such problems.

In one of examples the problem of analyzing nonlinear
electric circuits is investigated. This requires solving the
subtasks of drawing the circuit using SchemDraw library,
adding new elements to it, solving nonlinear algebraic
equations, and graphical representation of the results.

Most of the Python ecosystem libraries are available in
source code; reading and, if necessary, making additions
provides extra skills for working with Python program
code.

Mandatory components of the course are experimental

data processing and presentation by means of ecosystem,
interpolation and approximation, linear algebra, solving
systems of algebraic and ordinary differential equations.

With the help of NumPy the implementation of
difference schemes for solving partial derivative
equations, including nonlinear ones (Fig. 3), is considered
[28].

Optimization problems are solved using both
traditional methods and genetic algorithms. In addition,
problems related to statistical modeling are considered.
We show how to use optimizations to solve inverse
problems.

Practical problems from students' subject areas are
solved in separate blocks of course.

The solution of almost any problem is accompanied by
a scientific visualization, for example, conformal
mappings (Fig. 4). As more complex example of
visualization are considered Riemann surfaces
u+iv=f(x+iy), in this case values on one of coordinate axes
in four-dimensional space are displayed by color (Fig.5).

V. PATTERNS AND FRACTALS IN PYTHON

To improve the skills of algorithmic thinking and
scientific visualization it is necessary to solve a large
number of problems. To increase students' interest, some
of these problems were formulated as creating patterns
with a given symmetry. We used our own implementation
L system [29, 30], which is a kind of Domain Specific
Language. This allowed us to integrate patterns into JN,
and to formulate the algorithms for drawing patterns as a
set of axioms and rules on a set of turtle graphics
commands. The drawing of the patterns was organized as
a competition (Fig. 6). To draw a pattern, it is enough to
set the initial state (axiom) – a sequence of symbols –

Figure 3. Gray Scott model of reaction diffusion

Figure 4. Conformal mappings using functions z3 and th z

Figure 5. Riemann surfaces for the functions eiz and ln z

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1316 133

commands to draw the initial part of the pattern and rules
to transform the symbols. The initial state for a Koch
curve, is F – command to move forward, and the only

rule: F→F+F--F+F, where +,– turns to left and right,

respectively. The rules can be applied an arbitrary number
of times, the result will always be a string of commands to
draw. Students wrote pattern generators and then selected
the most attractive patterns, allowing the A symbol (Art)
to be added to the STEAM acronym. The best patterns
were published at the application server.

VI. INTEGRATED ENVIRONMENT FOR DEVELOPING AND

PUBLISHING COMPUTATIONAL WEB APPS

To use the considered technologies in the educational
process, a simple application server (AS) was developed
based on the VirtualBox virtual machine, on which
Ubuntu Server was installed, web server Nginx operates
with static content and as a reverse proxy. JN and JL, as
well as web apps, run using The Littlest JupyterHub
(TLJH) [31]. That allows both shared and private user
web apps. User authentication is mandatory.

AS supports remote work with JN, JL without the need
to install Python ecosystem applications on local
computers, but main purpose of AS is to run Dash,
Streamlit, Voilà web apps. Panel support was removed
due to its lack of use by students.

Administrative web utilities for content and user
management were developed. Tools have been added for
rapid publication of static sites with the ability to embed
interactive web apps into them (Fig. 7). This supports easy
publishing of smart tutorials with interactive active
content embedded in web pages using iframes.

Students can solve problems and develop web apps by
connecting to the AS. Developed web applications can be
placed in shared directories and embedded into the static
site for all students to share.

In the Covid-19 pandemic AS with published learning
materials was used as a unified flipped classroom
environment, aimed at problem-solving during classes.

For example, when studying the topic devoted to the
solution of ordinary differential equations, students are
introduced to the capabilities of the library scipy.integrate,
master the composition of simple systems of differential
equations, work with the functions of the library before
the class begins. In class they solve complex problems,
draw phase portraits of systems of ordinary differential
equations, build animations of problems solutions, save
them as videos.

The application server includes a static site generator
that allows to publish smart tutorials and student portfolios
by assembling them from heterogeneous content,
including html and pdf files, source code, external Internet
resources, images, videos, including those published on
YouTube, Python applications using Voilà, Streamlit, and
Dash technologies. Active content (Python applications
running on the AS) is displayed in the content pane in a
floating frame. To publish, you need to upload the files to
the shared content folder of the application server and
prepare a spreadsheet in Microsoft Excel with the table of
contents of the static site. Each line of the table of contents
specifies the name of the fragment, its type, the unified
resource locator, and the fragment level in the hierarchy.
The table of contents induces a linear-hierarchical
structure of the site, which is formed when compiling the
site. During compilation, fragments and unified resource
pointers are checked.

Loading a new version of the table of contents triggers
the compiler program to form a new version of the site.
This approach makes it possible to quickly publish
instructional materials before class. As mentioned above,
students primarily work with JN because of the ease of
publishing Voilà applications. An additional result is that
students have mastered the Markdown markup language
for text and Latex for formulas needed to publish
assignments.

The use of a static site makes it easier to conduct
classes, to find educational materials and applications.
Interactive Voilà utilities built into the application server
simplify the publication of additional materials and
resources. In particular, students' portfolios are published
with the help of these tools.

VII. CONCLUSION

We have considered educational technologies and
tools to support courses on scientific and technical
calculations in Python. Visualizing the results of solving

Figure 6. Patterns and fractals

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1316 134

almost every problem, publishing web applications to
conduct computational experiments increases the clarity,
allows gamification of classes, and competitions between
students. Students found it quite important to see the
results of their problem solving in the form of published
web applications, it is possible to discuss together.

Python ecosystem which has a uniquely wide set of
freeware libraries for solving applied problems puts an
influence on the technology of problem solving, when the
main thing is to decompose the problem to be solved into
a sequence of subproblems, the tools for solving them are
available in the libraries. At the same time, it is important
to search for and master these tools, "glue" the
subproblems into a program for solving it, plan the
computational experiments.

The developed integrated environment that supports
all stages of the learning process includes remote support
for working with JN and JL, running computational web
applications based of Voilà, Dash, Streamlit technologies.
Static website generator provides preparation of learning
materials with minimum labor intensity in the form of
smart tutorials with embedded computational web
applications. The tools used are so simple that they allow
students to publish their assignments as computational
web applications.

The considered bundle of technologies allows
practically seamless transition from face-to-face
classroom technology to distance learning when Cisco
Webex or Zoom were used. This approach turned out to
be productive in face-to-face training as well for operative
consultations without the need to insert them into the
schedule of computer classes.

REFERENCES

[1] G. Strimel, M.E. Grubbs, “Positioning Technology and
Engineering Education as a Key Force in STEM
Education,” Journal of Technology Education, vol. 27(2),
pp. 21–36, 2016.

[2] V. Ochkov, 25 Problems for STEM Education. 1st edn,
Chapman and Hall/CRC, London, 2020.

[3] H. P. Halvorsen, R. Tretjakova, J. Timmerberg, J. M.
Thiriet, S. Mylvaganam, “STEAM for STEM - Include
“Art” in STEM (Science, Technology, Engineering and
Mathematics),” in 29th Annual Conference of the European
Association for Education in Electrical and Information
Engineering (EAEEIE), pp. 1-7, 2019.

[4] С. Liao, “From Interdisciplinary to Transdisciplinary: An
Arts-Integrated Approach to STEAM Education,” Art
Education, vol. 69, no. 6, pp. 44-49, 2016.

[5] Do-Young Lee, Jong-In Chung, “The Effects of Middle
School Mathematical Statistics Area and Python
Programming STEAM Instruction on Problem Solving
Ability and Curriculum Interest,” Journal of the Korea
Academia-Industrial cooperation Society, vol. 20, no. 4 ,
pp. 336-344, 2019.

[6] Rafeek Mamdouh, Hazem M. El-Bakry, Alaa Riad, Nashaat
El-Khamisy, Converting 2D-Medical Image Files
“DICOM” into 3D- Models, based on Image Processing,
and Analysing their Results with Python Programming,
WSEAS Transactions on Computers, ISSN / E-ISSN: 1109-
275.

[7] Lucien Ngalamu, A Visual Learning Tool for Effective
Student Engagements in Computer Engineering Education:
Case of Digital Logic Instruction, WSEAS Transactions on

Computers, ISSN / E-ISSN: 1109-2750 / 2224-2872,
Volume 19, 2020, Art. #15, pp. 111-114.

[8] Jupyter, available at: https://jupyter.org/, [accessed: 27
December 2020].

[9] D. Toomey, Jupyter Cookbook. Packt, Birmingham-
Mumbai, 2018.

[10] Т.А Witten, L. M. Sander, “Diffusion-limited aggregation,”
Phys. Rev. B 27(9), 5686–5697, 1983.

[11] L.M. Sander, “Diffusion-limited aggregation: A kinetic
critical phenomenon,” Cont. Phys., vol. 41(4), pp. 203–218,
2000.

[12] And Voilà!, available at: https://blog.jupyter.org/and-
voil%C3%A0-f6a2c08a4a93, [accessed: 27 December
2020].

[13] Awesome Streamlit, available at: https://awesome-
streamlit.readthedocs.io, [accessed: 27 December 2020].

[14] M.A.K. Ovais, H. Khusro, Developing Multi-Platform Aps
with Visual Studio Code. 1st edn., Packt, Birmingham-
Mumbai, 2020.

[15] Jupyter Black [Black formatter for Jupyter Notebook],
available at: https://github.com/drillan/jupyter-blackm,
[accessed: 27 December 2020].

[16] Rise, available at: https://github.com/damianavila/RISE,
[accessed: 27 December 2020].

[17] Mathcad Gateway, available at:
https://community.ptc.com/t5/PTC-Mathcad/Mathcad-
Gateway-new-calculation-server-from-PTC/td-
p/11253?attachment-id=38240, [accessed: 27 December
2020].

[18] MATLAB Web App Server, available at:
https://www.mathworks.com/products/matlab-web-app-
server.html, accessed: 2020/12/28.

[19] C. Beely, S.R. Sukhdeve, Web Application Development
with R using Shiny. 3rd edn, Packt, Birmingham-Mumbai,
2020.

[20] D. Ashley, Foundation Dynamic Web Pages with Python.
1st edn, Apress, New York, 2020.

[21] Dash User Guide, available at: https://dash.plotly.com/, last
accessed: 2020/12/28.

[22] A. Tikhonov, “Dash as a platform for development of
computational web applications in Python”, 1st edn, LAP
Lambert Academic Publishing, Saarbrucken, 2018 (in
Russian).

[23] A. Bakns, E. Porcello, Learning React. 2nd edn, O’Reilly
Media, Sebastopol, USA, 2020.

[24] jupyter-dash, available at: https://github.com/plotly/jupyter-
dash, [accessed: 27 December 2020].

[25] django-plotly-dash, available at:
https://github.com/GibbsConsulting/django-plotly-dash,
accessed: 2020/12/28.

[26] Panel. A high-level app and dashboarding solution for
Python, available at: https://panel.pyviz.org/, [accessed: 27
December 2020].

[27] R. Zwitch, “Introducing Streamlit Components”, available
at: https://dzone.com/articles/introducing-streamlit-
components, accessed: 27 December 2020.

[28] Gray Scott Model of Reaction Diffusion, available at:
http://groups.csail.mit.edu/mac/projects/amorphous/GraySc
ott/, accessed: 2021/04/02.

[29] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty
of Plants. Berlin, Springer Verlag, 2004, 240 p.

[30] A. Lindenmayer, “Mathematical models for cellular
interaction in development,” J. Theoret. Biology, vol. 18,
pp. 280-315, 1968. Accessed: Oct. 28, 2020. [Online].
Avaiable:
http://www0.cs.ucl.ac.uk/staff/p.bentley/teaching/L6_readin
g/lsystems.

[31] The Littlest JupyterHub (TLJH), available at:
https://tljh.jupyter.org/en/latest/, accessed: 2020/12/28.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1316 135

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1316 136

https://creativecommons.org/licenses/by/4.0/deed.en_US

